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The kinetic model of column chromatography is revisited to explicitly show that this approach yields, when 
neglecting axial dispersion, a rather simple analytical expression depending only on two dimensionless parameters, 
namely a dimensionless kinetic retention parameter and a dimensionless time parameter. An expression for the 
time corresponding to the maximum of the peak is also proposed. 

Kinetic approaches of chromatography were first introduced in the forties, and 
perhaps the best known is the one developed by van Deemter et al. in 1956 [l] based on 
the earlier work of Lapidus and Amundson [2]. However, from the beginning, mass-trans- 
port processes such as diffusion have been considered because, at the early stages of 
chromatography, a lot of attention was given to the dynamics of zone spreading. A 
comprehensive overview of the kinetic approach of chromatography was given by Viller- 
maux [3] and more recently by Guiochon and coworkers [4] [ 5 ] .  The analytical solutions 
of the differential equations taking into account diffusion become rapidly complicated 
and rather intractable when trying to express the concentration distribution. This math- 
ematical complexity has deterred many and, e.g., the so-called van Deemter equation is 
often taught in a simplified parametric way [6]. 

Neglecting axial diffusion allows the resolution of the differential equation of the 
kinetic model of chromatography. This approach was first taken in 1944 by Thomas [7] 
to treat ion exchange in a flowing system. In 1953, the solution of the Thomas model has 
been derived by Goldstein in the case of a rectangular pulse injection [8] and more recently 
by Wade et al. [9] in the case of Dirac injection. In all cases, the resolution of the mass 
balance and kinetic equations (cf. Eqns. 2 and 3, vide infra) was achieved using the 
Thomas transformation [9], and the expressions obtained for the concentration distribu- 
tion profile are rather complicated and too long to be reproduced herein (see Eqn. 22 in 

The purpose of the present paper is to show that the differential equation of the 
kinetic model of chromatography can be solved in such a way that the resulting expres- 
sion is similar to that obtained in 1955 by Giddings and Eyring [lo] using a stochastic 
approach for the concentration distribution in a column of finite length for a Dirac 
impuse injection in the absence of diffusion in the column. We show by the formalism 
developed below that the concentration distribution can be expressed by a rather simple 
analytical expression depending on only two independent dimensionless parameters. 

PI). 
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The driving force for this investigation stems from our work on liquid/liquid parti- 
tion chromatography to measure partition coefficients of neutral or ionic drug 
molecules between water and 1,2-dichloroethane [ l l ]  [12]. It is a fact that the kinetic 
model has inherent limitations which makes it a poor model of preparative and/or 
nonlinear chromatography. However, in the case of liquidlliquid partition chromatogra- 
phy, the kinetic approach allows direct comparison with other techniques such as 
voltammetry which can be used to measure the kinetics of the phase-transfer processes 
~ 3 1 .  

Theory. - Let us consider a chromatography column with a stationary and a mobile 
phase. We shall consider the retention with a rate constant for solute transfer from the 
mobile to the stationary phase k’ and a rate constant for release L. From the detailed 
balance principle, the forward and backward rate constants are related by Eqn. I where 
dG, is the Gibbs energy of the ‘reaction’, e.g., partition between the two phases or 
adsorption/desorption depending on the chromatographic method. It should be stressed 
that Eqn. I does not imply that an equilibrium is established between the stationary and 
the mobile phase. 

Let L be the length of the column and a the distance between the injector and the 
beginning of the column as illustrated in Fig. 1. We suppose that the linear flow of the 
mobile phase has a constant velocity u. The differential equations then read as shown in 
Eqns. 2 and 3 where c,  and cs are the concentration of the solute in the mobile and 
stationary phase, respectively, 4 the phase ratio, the geometric factor which takes into 
account the different volume of the two phases, and B the Heaviside step function. By 
definition, the geometric factor is equal to the ratio of the cross-section area occupied by 
the stationary and the mobile phases, and it is, therefore, also equal to the ratio of the 
respective volumes (Eqn. 4). 

Input Separation Column Detector 

z=o a L+a 2 

Fig. 1. Geometric parameters of the chromatographic column 
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We assume that the injection corresponds to a Dirac impulsion. The boundary conditions 
for Eqns. 2 and 3 are then described by Eqns. 5 and 6, respectively. 

c,(z, 0) = cod (4 ( 5 )  

cs(z, t )  = 0 at z < a and z < L + a (6) 

Eqn. 7 gives the Laplace tansform of Eqn. 2 within the column for a 5 z < L + a, and 
Eqn. 8 defines u (s). Resolution of Eqn. 8 yields Eqn. 9. 

- Ickc 

u(s) = s + k - __ 
s + L  

U ( S ) I !  

0 
- -~ 

C,(z ,  s) = B(s) exp (9) 

Outside the column for z < a and for z > L + a, the Laplace transform of Eqn. 2 yields 
Eqn. 10 for which the solution is given by Eqn. 11 where A,(s )  and A , @ )  refer to the 
regions z < a and z > L + a, respectively. In the region between the injector and the 
column, the solution of Eqn. I 1  has the form of Eqn. 12, and its Laplace transform is, 
therefore, given by Eqn. 13 which determines the constant A,(s )  equal to co/v. 

SZ 

c,(z, s) = ~,,,(s) exp-u 

c,(z, t )  = - - 6  t -  - O(z) 
co V ( :) 

S Z  

The continuity of Fm(z, s) at z = a and z = L + a allows the calculation of the 
constants A ,  (s) and B(s)  by Eqns. 14 and 15. In this way, the Laplace transform of the 
concentration in the mobile phase for the section after the column is now given by 
Eqn. 16. 

u(s)L SL c, - -  ~ 

A , ( s )  =-exp expu 
V 

sa u(sJa c, -_  __ 
B(s) = -exp exp 

V 
u(s)L s(z - L) c, -_ 

C,(z, s) = -exp exp u 
V 

Eqn. 17 describes the inverse Laplace transform of Eqn. 16 where I ,  is the modified Bessel 
function of the first kind of the first order. The first term of this expression corresponds 
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to the passage of unretained solutes (unrestrained movement of the Dirac impulsion), 
whereas the second term corresponds to the concentration distribution of the retained 
products. The second term is identical to the expression derived by Giddings and Eyring 
[lo] from a stochastic approach. 

V 

To illustrate better this analytical solution, let us introduce a dimensionless kinetic 
retention coefficient { and a dimensionless time z (Eqn. 18). The ratio z /v  represents the 
dead time for the passage of a non-retained solute, and the dimensionless time is, 
therefore, the net retention time normalized by the desorption time td( td  = kc- ' ) .  With 
this notation, if we omit the first term corresponding to the travelling of the Dirac 
impulsion of which the amplitude decreases exponentially with distance, Eqn. 17 can be 
expressed by a rather simple analytical function depending only on the two independent 
dimensionless parameters defined above and three constants of the system, namely the 
concentration c, of the sample, the ratio of the forward and backward rate constants 
denoted as K 4 ,  and the length L of the column (see Eqn. f Y ) .  When there is an equilibri- 
um between the stationary and the mobile phase, K represents the distribution coefficient 
(K  r= CslCm). 

Eqn. 19 defines the envelope of chromatographic responses in the absence of axial 
dispersion, and the results obtained are illustrated in Fig. 2. Eqn. f Y  should be compared 
to previous expressions (e.g. Eqn. 22 in [9]) obtained for the same differential equation 
(Eqns. 2 and 3)  with the same boundary conditions (Eqns. 5 and 6).  The only difference 
between the two formalisms stems from the fact that in liquid/liquid partition chro- 
matography, we do not consider that the stationary phase has a finite concentration of 
binding sites. 

It should be stressed that the apparent simplicity of the Eqn. 19 stems principally 
from the choice of the dimensionless parameters 5 and z, and not from restrictive 
conditions imposed when solving the differential Eqns. 2 and 3. 

Maximum of the Distribution. - The maximum of the distribution does not corre- 
spond to the first moment (vide infra). The time z,,, corresponding to this maximum can 
be obtained by solving Eqn. 20 
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z 
F i g .  2. Chromatographic response in the absence of axial dispersion derivedjrom Eqn. 19 

Rather than solving directly Eqn. 20, we shall give a parametric dependence of z,,, on 
the dimensionless retention coefficient 5. For that purpose, let us calculate the derivative 
in Eqn. 20 and write it as shown in Eqn. 21. A change of variables in Eqn. 2i  (5 = z2/4() 
yield Eqn. 22 from which we obtain because dZ,(z)/dz = Zo(z) - Z,(z)/2. Using Eqn. 23 
and the definition of 5 according to Eqn. 18, we get Eqn. 24. 

zm,, = - 4 l  

Eqns. 23 and 24 give a parametric dependence of the peak maximum on the retention 
parameter 5. This allows a direct comparison of the difference between peak maximum 
and first moment. It is clear that as the chromatographic signal tends towards a Gaussian 
shape (5 --f a), the two quantities merge. 

Moment of the Distribution. -To calculate the first and second moments of the solute 
concentration distribution, we shall first normalize the concentration by division by co/v 
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so that the zeroth moment or peak area is equal to unity. The Laplace transform of the 
normalized concentration is then given by Eqn. 25 and can be developed in series to 
obtain Eqn. 26. By comparison of the definition of the Laplace transform of the normal- 
ized concentration, we shall be able to obtain directly the moments (Eqn. 27). 

1181 

L6 L i E  _-  -~ 
F,(s) = exp 0 expus+E (25 )  

(27) 
rn a3 

F,(s) = f, c,( t )  exp-"dt = [ c,( t )  
0 

The first moment p1 or retention time is then given by Eqn. 28 where t ,  is the mean 
desorption time. In other words, the dimensionless time corresponding to the first 
moment is equal to the dimensionless kinetic retention coefficient (Eqn. 29). It is clear 
from Fig. 2 that the first moment occurs after the peak (vide supra). Of course, it is worth 
remembering that the position of the first moment is a function of the retention property 
of the column, and is independent of the presence or absence of axial diffusion. 

m L E  j tc,(t)dt=t,=-:=~t,  
0 v k  

Similarly, the second moment is defined by Eqn. 30. The second central moment 
which represents the variance is defined by Eqn. 31 and is, therefore, equal to v2 given 
by Eqn. 32 which corresponds to a dimensionless variance r ~ f  (Eqn. 33). 

v2=2,  PLT 
4 

0: = 2 r  

(32) 

(33) 

This result shows that the dimensionless variance is proportional to the length of the 
column and inversely proportional to the mobile-phase velocity. Of course, when the 
concentration distribution tends to a Gaussian shape, the band spreading due to the axial 
dispersion is an additive quantity which can simply be added to the expression obtained 
above. 

When comparing the peak shape with a Gaussian curve, it is usual to express the 
deviation by the skew S (Eqn. 34). A positive value of S indicates a tailing of the peak. 
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The excess E is positive if the distribution is more peaked than a Gaussian. It is defined 
by Eqn. 35. It is clear from Eqns. 34 and 35 that the peak shape tends to a pure Gaussian 
peak when 5 tends to infinity. 

In conclusion, this paper presents a rigourous presentation of the kinetic theory of 
chromatography which yields a rather simple concentration distribution function 
(Eqn. 19) depending, upon only two dimensionless parameters, namely a kinetic reten- 
tion parameter 5 and a dimensionless time ‘t. 

Furthermore, if we neglect the dead volume between the injector and the column and 
that between the column and the detector, the kinetic retention parameter is simply 
defined as the product of the dead time by the first-order rate constant for the transfer 
from the mobile to the stationary phase (Eqn. 36). With the same considerations, the 
dimensionless time is simply defined as the net retention time normalized by the desorp- 
tion time (Eqn. 37). The first moment is defined when these two dimensionless parame- 
ters are equal. All the other parameters relative to the chromatographic signal, e.g., 
variance, skew, and excess, can be easily described by these two dimensionless numbers. 
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